Recent Publications (Original)
Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration (Shimizu et al., Hum Mol Genet.)
2023.07.06 Recent Publications (Original)
Takahiro Shimizu, Norito Tamura, Taki Nishimura, Chieko Saito, Hayashi Yamamoto, Noboru Mizushima
Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration
Hum Mol Genet. 2023 Jun 26;ddad096. doi: 10.1093/hmg/ddad096.
β-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21, and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1-4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including β-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1-WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3, and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI-knockout (single, double, and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.